3.2.26 \(\int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^3} \, dx\) [126]

3.2.26.1 Optimal result
3.2.26.2 Mathematica [A] (verified)
3.2.26.3 Rubi [C] (verified)
3.2.26.4 Maple [A] (verified)
3.2.26.5 Fricas [F]
3.2.26.6 Sympy [F]
3.2.26.7 Maxima [F]
3.2.26.8 Giac [F(-2)]
3.2.26.9 Mupad [F(-1)]

3.2.26.1 Optimal result

Integrand size = 26, antiderivative size = 201 \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=-\frac {b c \sqrt {d+c^2 d x^2}}{2 x \sqrt {1+c^2 x^2}}-\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {c^2 \sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x)) \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {b c^2 \sqrt {d+c^2 d x^2} \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )}{2 \sqrt {1+c^2 x^2}}+\frac {b c^2 \sqrt {d+c^2 d x^2} \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )}{2 \sqrt {1+c^2 x^2}} \]

output
-1/2*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^2-1/2*b*c*(c^2*d*x^2+d)^(1/2 
)/x/(c^2*x^2+1)^(1/2)-c^2*(a+b*arcsinh(c*x))*arctanh(c*x+(c^2*x^2+1)^(1/2) 
)*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-1/2*b*c^2*polylog(2,-c*x-(c^2*x^2+ 
1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)+1/2*b*c^2*polylog(2,c*x+(c 
^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)
 
3.2.26.2 Mathematica [A] (verified)

Time = 2.25 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.11 \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\frac {1}{8} \left (-\frac {4 a \sqrt {d+c^2 d x^2}}{x^2}+4 a c^2 \sqrt {d} \log (x)-4 a c^2 \sqrt {d} \log \left (d+\sqrt {d} \sqrt {d+c^2 d x^2}\right )+\frac {b c^2 \sqrt {d+c^2 d x^2} \left (-2 \coth \left (\frac {1}{2} \text {arcsinh}(c x)\right )-\text {arcsinh}(c x) \text {csch}^2\left (\frac {1}{2} \text {arcsinh}(c x)\right )+4 \text {arcsinh}(c x) \log \left (1-e^{-\text {arcsinh}(c x)}\right )-4 \text {arcsinh}(c x) \log \left (1+e^{-\text {arcsinh}(c x)}\right )+4 \operatorname {PolyLog}\left (2,-e^{-\text {arcsinh}(c x)}\right )-4 \operatorname {PolyLog}\left (2,e^{-\text {arcsinh}(c x)}\right )-\text {arcsinh}(c x) \text {sech}^2\left (\frac {1}{2} \text {arcsinh}(c x)\right )+2 \tanh \left (\frac {1}{2} \text {arcsinh}(c x)\right )\right )}{\sqrt {1+c^2 x^2}}\right ) \]

input
Integrate[(Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/x^3,x]
 
output
((-4*a*Sqrt[d + c^2*d*x^2])/x^2 + 4*a*c^2*Sqrt[d]*Log[x] - 4*a*c^2*Sqrt[d] 
*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]] + (b*c^2*Sqrt[d + c^2*d*x^2]*(-2*Cot 
h[ArcSinh[c*x]/2] - ArcSinh[c*x]*Csch[ArcSinh[c*x]/2]^2 + 4*ArcSinh[c*x]*L 
og[1 - E^(-ArcSinh[c*x])] - 4*ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + 4* 
PolyLog[2, -E^(-ArcSinh[c*x])] - 4*PolyLog[2, E^(-ArcSinh[c*x])] - ArcSinh 
[c*x]*Sech[ArcSinh[c*x]/2]^2 + 2*Tanh[ArcSinh[c*x]/2]))/Sqrt[1 + c^2*x^2]) 
/8
 
3.2.26.3 Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.68 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.75, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {6220, 15, 6231, 3042, 26, 4670, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{x^3} \, dx\)

\(\Big \downarrow \) 6220

\(\displaystyle \frac {c^2 \sqrt {c^2 d x^2+d} \int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 x^2+1}}dx}{2 \sqrt {c^2 x^2+1}}+\frac {b c \sqrt {c^2 d x^2+d} \int \frac {1}{x^2}dx}{2 \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 x^2}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {c^2 \sqrt {c^2 d x^2+d} \int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 x^2+1}}dx}{2 \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {b c \sqrt {c^2 d x^2+d}}{2 x \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 6231

\(\displaystyle \frac {c^2 \sqrt {c^2 d x^2+d} \int \frac {a+b \text {arcsinh}(c x)}{c x}d\text {arcsinh}(c x)}{2 \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {b c \sqrt {c^2 d x^2+d}}{2 x \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {c^2 \sqrt {c^2 d x^2+d} \int i (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{2 \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {b c \sqrt {c^2 d x^2+d}}{2 x \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i c^2 \sqrt {c^2 d x^2+d} \int (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{2 \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {b c \sqrt {c^2 d x^2+d}}{2 x \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 4670

\(\displaystyle \frac {i c^2 \sqrt {c^2 d x^2+d} \left (i b \int \log \left (1-e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)-i b \int \log \left (1+e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )}{2 \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {b c \sqrt {c^2 d x^2+d}}{2 x \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {i c^2 \sqrt {c^2 d x^2+d} \left (i b \int e^{-\text {arcsinh}(c x)} \log \left (1-e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}-i b \int e^{-\text {arcsinh}(c x)} \log \left (1+e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )}{2 \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {b c \sqrt {c^2 d x^2+d}}{2 x \sqrt {c^2 x^2+1}}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {i c^2 \sqrt {c^2 d x^2+d} \left (2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))+i b \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )-i b \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )\right )}{2 \sqrt {c^2 x^2+1}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 x^2}-\frac {b c \sqrt {c^2 d x^2+d}}{2 x \sqrt {c^2 x^2+1}}\)

input
Int[(Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/x^3,x]
 
output
-1/2*(b*c*Sqrt[d + c^2*d*x^2])/(x*Sqrt[1 + c^2*x^2]) - (Sqrt[d + c^2*d*x^2 
]*(a + b*ArcSinh[c*x]))/(2*x^2) + ((I/2)*c^2*Sqrt[d + c^2*d*x^2]*((2*I)*(a 
 + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]] + I*b*PolyLog[2, -E^ArcSinh[c*x 
]] - I*b*PolyLog[2, E^ArcSinh[c*x]]))/Sqrt[1 + c^2*x^2]
 

3.2.26.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4670
Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x 
_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] 
 + (-Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*fz*x 
)], x], x] + Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e 
+ f*fz*x)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
 

rule 6220
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + 
 (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*Arc 
Sinh[c*x])^n/(f*(m + 1))), x] + (-Simp[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d + e* 
x^2]/Sqrt[1 + c^2*x^2]]   Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x 
], x] - Simp[(c^2/(f^2*(m + 1)))*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]] 
Int[(f*x)^(m + 2)*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x], x]) /; Fr 
eeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[m, -1]
 

rule 6231
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.) 
*(x_)^2], x_Symbol] :> Simp[(1/c^(m + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e 
*x^2]]   Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ 
[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]
 
3.2.26.4 Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 334, normalized size of antiderivative = 1.66

method result size
default \(a \left (-\frac {\left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{2 d \,x^{2}}+\frac {c^{2} \left (\sqrt {c^{2} d \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )\right )}{2}\right )+b \left (-\frac {\left (\operatorname {arcsinh}\left (c x \right ) c^{2} x^{2}+c x \sqrt {c^{2} x^{2}+1}+\operatorname {arcsinh}\left (c x \right )\right ) \sqrt {d \left (c^{2} x^{2}+1\right )}}{2 x^{2} \left (c^{2} x^{2}+1\right )}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {polylog}\left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {polylog}\left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}}\right )\) \(334\)
parts \(a \left (-\frac {\left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{2 d \,x^{2}}+\frac {c^{2} \left (\sqrt {c^{2} d \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )\right )}{2}\right )+b \left (-\frac {\left (\operatorname {arcsinh}\left (c x \right ) c^{2} x^{2}+c x \sqrt {c^{2} x^{2}+1}+\operatorname {arcsinh}\left (c x \right )\right ) \sqrt {d \left (c^{2} x^{2}+1\right )}}{2 x^{2} \left (c^{2} x^{2}+1\right )}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {polylog}\left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {polylog}\left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}}\right )\) \(334\)

input
int((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^3,x,method=_RETURNVERBOSE)
 
output
a*(-1/2/d/x^2*(c^2*d*x^2+d)^(3/2)+1/2*c^2*((c^2*d*x^2+d)^(1/2)-d^(1/2)*ln( 
(2*d+2*d^(1/2)*(c^2*d*x^2+d)^(1/2))/x)))+b*(-1/2*(arcsinh(c*x)*c^2*x^2+c*x 
*(c^2*x^2+1)^(1/2)+arcsinh(c*x))*(d*(c^2*x^2+1))^(1/2)/x^2/(c^2*x^2+1)-1/2 
*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1) 
^(1/2))*c^2-1/2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*polylog(2,-c*x-(c^ 
2*x^2+1)^(1/2))*c^2+1/2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c* 
x)*ln(1-c*x-(c^2*x^2+1)^(1/2))*c^2+1/2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^( 
1/2)*polylog(2,c*x+(c^2*x^2+1)^(1/2))*c^2)
 
3.2.26.5 Fricas [F]

\[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\int { \frac {\sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x^{3}} \,d x } \]

input
integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^3,x, algorithm="fricas" 
)
 
output
integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)/x^3, x)
 
3.2.26.6 Sympy [F]

\[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\int \frac {\sqrt {d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )}{x^{3}}\, dx \]

input
integrate((a+b*asinh(c*x))*(c**2*d*x**2+d)**(1/2)/x**3,x)
 
output
Integral(sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x))/x**3, x)
 
3.2.26.7 Maxima [F]

\[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\int { \frac {\sqrt {c^{2} d x^{2} + d} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{x^{3}} \,d x } \]

input
integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^3,x, algorithm="maxima" 
)
 
output
-1/2*(c^2*sqrt(d)*arcsinh(1/(c*abs(x))) - sqrt(c^2*d*x^2 + d)*c^2 + (c^2*d 
*x^2 + d)^(3/2)/(d*x^2))*a + b*integrate(sqrt(c^2*d*x^2 + d)*log(c*x + sqr 
t(c^2*x^2 + 1))/x^3, x)
 
3.2.26.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/x^3,x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.2.26.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{x^3} \, dx=\int \frac {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {d\,c^2\,x^2+d}}{x^3} \,d x \]

input
int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2))/x^3,x)
 
output
int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2))/x^3, x)